Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.393
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124098, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460232

RESUMO

L-Acetylcarnitine (ALC), a versatile compound, has demonstrated beneficial effects in depression, Alzheimer's disease, cognitive impairment, and other conditions. This study focuses on its antithyroid activity. The precursor molecule, L-carnitine, inhibited the uptake of triiodothyronine (T3) and thyroxine (T4), and it is possible that ALC may reduce the iodination process of T3 and T4. Currently, antithyroid drugs are used to control the excessive production of thyroid hormones (TH) through various mechanisms: (i) forming electron donor-acceptor complexes with molecular iodine, (ii) eliminating hydrogen peroxide, and (iii) inhibiting the enzyme thyroid peroxidase. To understand the pharmacological properties of ALC, we investigated its plausible mechanisms of action. ALC demonstrated the ability to capture iodine (Kc = 8.07 ± 0.32 x 105 M-1), inhibit the enzyme lactoperoxidase (LPO) (IC50 = 17.60 ± 0.76 µM), and scavenge H2O2 (39.82 ± 0.67 mM). A comprehensive physicochemical characterization of ALC was performed using FTIR, Raman, and UV-Vis spectroscopy, along with theoretical DFT calculations. The inhibition process was assessed through fluorescence spectroscopy and vibrational analysis. Docking and molecular dynamics simulations were carried out to predict the binding mode of ALC to LPO and to gain a better understanding into the inhibition process. Furthermore, albumin binding experiments were also conducted. These findings highlight the potential of ALC as a therapeutic agent, providing valuable insights for further investigating its role in the treatment of thyroid disorders.


Assuntos
Iodo , Glândula Tireoide , Lactoperoxidase/metabolismo , Lactoperoxidase/farmacologia , Acetilcarnitina/metabolismo , Acetilcarnitina/farmacologia , Peróxido de Hidrogênio/farmacologia , Iodo/química , Modelos Teóricos
2.
Bioorg Chem ; 141: 106891, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37788560

RESUMO

Lactoperoxidase was previously used as a model enzyme to test the inhibitory activity of selenium analogs of anti-thyroid drugs with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) as a substrate. Peroxidases oxidize ABTS to a metastable radical ABTS•+, which is readily reduced by many antioxidants, including thiol-containing compounds, and it has been used for decades to measure antioxidant activity in biological samples. We showed that anti-thyroid drugs 6-n-propyl-2-thiouracil, methimazole, and selenium analogs of methimazole also reduced it rapidly. This reaction may explain the anti-thyroid action of many other compounds, particularly natural antioxidants, which may reduce the oxidized form of iodine and/or tyrosyl radicals generated by thyroid peroxidase thus decreasing the production of thyroid hormones. However, influence of selenium analogs of methimazole on the rate of hydrogen peroxide consumption during oxidation of ABTS by lactoperoxidase was moderate. Direct hydrogen peroxide reduction, proposed before as their mechanism of action, cannot therefore account for the observed inhibitory effects. 1-Methylimidazole-2-selone and its diselenide were oxidized by ABTS•+ to relatively stable seleninic acid, which decomposed slowly to selenite and 1-methylimidazole. In contrast, oxidation of 1,3-dimethylimidazole-2-selone gave selenite and 1,3-dimethylimidazolium cation. Accumulation of the corresponding seleninic acid was not observed.


Assuntos
Selênio , Antioxidantes/farmacologia , Cátions , Peróxido de Hidrogênio/química , Lactoperoxidase/metabolismo , Metimazol/farmacologia , Oxirredução , Ácido Selenioso , Selênio/química , Propiltiouracila/química , Propiltiouracila/farmacologia
3.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37569513

RESUMO

The lactoperoxidase (LPO) system shows promise in the prevention of dental caries, a common chronic disease. This system has antimicrobial properties and is part of the non-specific antimicrobial immune system. Understanding the efficacy of the LPO system in the fight against biofilms could provide information on alternative strategies for the prevention and treatment of caries. In this study, the enzymatic system was modified using four different (pseudo)halide substrates (thiocyanate, thiocyanate-iodide mixture, selenocyanate, and iodide). The study evaluated the metabolic effects of applying such modifications to Streptococcus mutans; in particular: (1) biofilm formation, (2) synthesis of insoluble polysaccharides, (3) lactate synthesis, (4) glucose and sucrose consumption, (5) intracellular NAD+ and NADH concentrations, and (6) transmembrane glucose transport efficiency (PTS activity). The results showed that the LPO-iodide system had the strongest inhibitory effect on biofilm growth and lactate synthesis (complete inhibition). This was associated with an increase in the NAD+/NADH ratio and an inhibition of glucose PTS activity. The LPO-selenocyanate system showed a moderate inhibitory effect on biofilm biomass growth and lactate synthesis. The other systems showed relatively small inhibition of lactate synthesis and glucose PTS but no effect on the growth of biofilm biomass. This study provides a basis for further research on the use of alternative substrates with the LPO system, particularly the LPO-iodide system, in the prevention and control of biofilm-related diseases.


Assuntos
Anti-Infecciosos , Cárie Dentária , Humanos , Streptococcus mutans , Tiocianatos/farmacologia , Lactoperoxidase/farmacologia , Lactoperoxidase/metabolismo , NAD/metabolismo , Iodetos/metabolismo , Biofilmes , Anti-Infecciosos/farmacologia , Glucose/metabolismo , Lactatos/metabolismo
4.
Chem Biodivers ; 20(8): e202300687, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37427460

RESUMO

Lactoperoxidase enzyme (LPO) is secreted from salivary, mammary, and other mucosal glands including the bronchi, lungs, and nose, which had functions as a natural and the first line of defense towards viruses and bacteria. In this study, methyl benzoates were examined in LPO enzyme activity. Methyl benzoates are used as precursors in the synthesis of aminobenzohydrazides used as LPO inhibitors. For this purpose, LPO was purified in a single step using sepharose-4B-l-tyrosine-sulfanilamide affinity gel chromatography with a yield of 9.91 % from cow milk. Also, some inhibition parameters including the half maximal inhibitory concentration (IC50 ) value and an inhibition constant (Ki ) values of methyl benzoates were determined. These compounds inhibited LPO with Ki values ranging from 0.033±0.004 to 1540.011±460.020 µM. Compound 1 a (methyl 2-amino-3-bromobenzoate) showed the best inhibition (Ki =0.033±0.004 µM). The most potent inhibitor (1 a) showed with a docking score of -3.36 kcal/mol and an MM-GBSA value of -25.05 kcal/mol, of these methyl benzoate derivatives (1 a-16 a) series are established H-bond within the binding cavity with residues Asp108 (distance of 1.79 Å), Ala114 (distance of 2.64 Å), and His351 (distance of 2.12 Å).


Assuntos
Lactoperoxidase , Leite , Feminino , Animais , Bovinos , Simulação de Acoplamento Molecular , Lactoperoxidase/metabolismo , Leite/química , Leite/metabolismo , Benzoatos/farmacologia , Benzoatos/análise
5.
J Inorg Biochem ; 247: 112311, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37421730

RESUMO

Lactoperoxidase (LPO) is a heme containing mammalian enzyme which uses hydrogen peroxide (H2O2) to catalyze the conversion of substrates into oxidized products. LPO is found in body fluids and tissues such as milk, saliva, tears, mucosa and other body secretions. The previous structural studies have shown that LPO converts substrates, thiocyanate (SCN-) and iodide (I-) ions into oxidized products, hypothiocyanite (OSCN-) and hypoiodite (IO-) ions respectively. We report here a new structure of the complex of LPO with an oxidized product, nitrite (NO2-). This product was generated from NO using the two step reaction of LPO by adding hydrogen peroxide (H2O2) in the solution of LPO in 0.1 M phosphate buffer at pH 6.8 as the first step. In the second step, NO gas was added to the above mixture. This was crystallized using 20% (w/v) PEG-3350 and 0.2 M ammonium iodide at pH 6.8. The structure determination showed the presence of NO2- ion in the distal heme cavity of the substrate binding site of LPO. The structure also showed that the propionate group which is linked to pyrrole ring D of the heme moiety was disordered. Similarly, the side chain of Asp108, which is covalently linked to heme moiety, was also split into two components. As a result of these changes, the conformation of the side chain of Arg255 was altered allowing it to form new interactions with the disordered carboxylic group of propionate moiety. These structural changes are indicative of an intermediate state in the catalytic reaction pathway of LPO.


Assuntos
Lactoperoxidase , Nitritos , Animais , Lactoperoxidase/química , Nitritos/metabolismo , Óxido Nítrico/metabolismo , Peróxido de Hidrogênio/metabolismo , Dióxido de Nitrogênio/metabolismo , Propionatos , Mamíferos/metabolismo , Heme/química
6.
J Biol Chem ; 299(6): 104792, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37150321

RESUMO

Necroptosis is a form of regulated cell death triggered by various host and pathogen-derived molecules during infection and inflammation. The essential step leading to necroptosis is phosphorylation of the mixed lineage kinase domain-like protein by receptor-interacting protein kinase 3. Caspase-8 cleaves receptor-interacting protein kinases to block necroptosis, so synthetic caspase inhibitors are required to study this process in experimental models. However, it is unclear how caspase-8 activity is regulated in a physiological setting. The active site cysteine of caspases is sensitive to oxidative inactivation, so we hypothesized that oxidants generated at sites of inflammation can inhibit caspase-8 and promote necroptosis. Here, we discovered that hypothiocyanous acid (HOSCN), an oxidant generated in vivo by heme peroxidases including myeloperoxidase and lactoperoxidase, is a potent caspase-8 inhibitor. We found HOSCN was able to promote necroptosis in mouse fibroblasts treated with tumor necrosis factor. We also demonstrate purified caspase-8 was inactivated by low concentrations of HOSCN, with the predominant product being a disulfide-linked dimer between Cys360 and Cys409 of the large and small catalytic subunits. We show oxidation still occurred in the presence of reducing agents, and reduction of the dimer was slow, consistent with HOSCN being a powerful physiological caspase inhibitor. While the initial oxidation product is a dimer, further modification also occurred in cells treated with HOSCN, leading to higher molecular weight caspase-8 species. Taken together, these findings indicate major disruption of caspase-8 function and suggest a novel mechanism for the promotion of necroptosis at sites of inflammation.


Assuntos
Caspase 8 , Necroptose , Oxidantes , Fatores de Necrose Tumoral , Animais , Camundongos , Caspase 8/química , Caspase 8/metabolismo , Inflamação/metabolismo , Necroptose/efeitos dos fármacos , Oxidantes/metabolismo , Oxidantes/farmacologia , Oxirredução/efeitos dos fármacos , Fatores de Necrose Tumoral/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Fibroblastos/metabolismo , Peroxidase , Lactoperoxidase , Domínio Catalítico
7.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36768964

RESUMO

One strategy in caries prevention is to inhibit the formation of cariogenic biofilms. Attempts are being made to develop oral hygiene products enriched with various antimicrobial agents. One of them is lactoperoxidase-an enzyme that can oxidise (pseudo)halide ions to reactive products with antimicrobial activity. Currently, commercially available products utilise thiocyanate as a substrate; however, several alternatives that are oxidised to products with greater antimicrobial potential have been found. In this study, toxicity against human gingival fibroblasts of the lactoperoxidase system was evaluated using four different (pseudo)halide substrate systems-thiocyanate, iodide, selenocyanate, and a mixture of thiocyanate and iodide. For this purpose, cells were treated with the systems and then apoptosis, cell cycle, intracellular glutathione concentration, and mitochondrial superoxide production were assessed. The results showed that each system, after generating 250 µM of the product, inhibited cell divisions, increased apoptosis, and increased the percentage of dead cells. It was concluded that the mechanism of the observed phenomena was not related to increased superoxide production or the depletion of glutathione concentration. These findings emphasised the need for the further in vitro and in vivo toxicity investigation of the modified lactoperoxidase system to assess its safety and the possibility of use in oral hygiene products.


Assuntos
Lactoperoxidase , Tiocianatos , Humanos , Fibroblastos/metabolismo , Peróxido de Hidrogênio/farmacologia , Iodetos/metabolismo , Lactoperoxidase/metabolismo , Superóxidos , Tiocianatos/farmacologia , Gengiva/metabolismo
8.
J Hum Lact ; 39(2): 300-307, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36176243

RESUMO

BACKGROUND: The most utilized pasteurization method in donor human milk banks is Holder pasteurization (heating 62.5 °C for 30 min). However, many bioactive proteins are heat sensitive and are inactivated. RESEARCH AIM: To determine the results of a range of heating regimes on the activities of xanthine oxidase, lactoperoxidase and lysozyme, the concentrations of immunoglobulin A and lactoferrin, as well as bacterial inactivation. METHOD: This prospective, cross-sectional, intervention study was designed to measure the influence of heating temperatures on bioactive components in donor human milk. Milk samples were processed at 40, 50, 55, 62.5, 75, 127 °C and the activities of the enzymes, and the concentration of immune proteins, were measured. RESULTS: No bacterial colonies were detectable, using standard culture methods, after heating above 50 ºC. All proteins studied retained over 60% concentrations or activities when the pasteurization temperature was 50 ºC or lower, while their concentrations or activities were lost at higher temperatures. For lactoferrin, the residual concentration was above 80% when heating temperature was under 55 °C, while only 20% remained after Holder pasteurization. Both xanthine oxidase and lactoperoxidase had little residual activity when temperatures were above Holder pasteurization. Lysozyme retained a greater proportion of residual activity than other proteins, following heating at all temperatures. CONCLUSIONS: The concentrations or activities of immune proteins and bioactive enzymes decreased when heated above 50 °C. The results of this study can be used to design temperature control guidance during alternative methods of pasteurization.


Assuntos
Bancos de Leite Humano , Leite Humano , Feminino , Humanos , Leite Humano/microbiologia , Muramidase , Temperatura , Lactoferrina , Calefação , Xantina Oxidase , Lactoperoxidase , Estudos Transversais , Estudos Prospectivos , Aleitamento Materno , Pasteurização/métodos , Proteínas do Leite
9.
J Sep Sci ; 46(3): e2200639, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36459687

RESUMO

This study proposed the development of a monolithic supermacroporous affinity column for direct capture of lactoperoxidase, a glycoprotein present in milk, whey, and colostrum, with several applications due to its wide antimicrobial activity. A poly(acrylamide)-based cryogel was produced by radical co-polymerization of monomers in frozen aqueous solution and activated with p-aminobenzenesulfonamide as a ligand for specific interaction with the lactoperoxidase. The axial liquid dispersion coefficients at different liquid flow rates were determined by measuring residence time distributions using the tracer pulse-response method. The axial dispersion coefficient was low and the height equivalent to theoretical plate was not dependent on the flow velocity. The adsorptive capacity of affinity cryogel was studied as a function of flow velocity and the best condition was 0.9 cm/min. The response surface methodology was applied to optimize the capture of the enzyme, as a function of pH and salt concentration. Higher purification factor value was found at a salt concentration of 80 mmol/L and pH of 8.0 (p < 0.05). There was no influence of the variables under study on the yield (p > 0.05). The results indicated that affinity cryogel is a promising chromatography support for the use in high-throughput one-step purification of lactoperoxidase from whey.


Assuntos
Criogéis , Lactoperoxidase , Criogéis/química , Soro do Leite , Ligantes , Adsorção , Cromatografia de Afinidade/métodos
10.
Scand J Immunol ; 98(1): e13269, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38441191

RESUMO

We draw the attention of readers and governments to the death rate from coronavirus disease 2019 in Japan, continuing as a fraction of that experienced by many other developed nations. We think this is due to the activity of the powerful, protective lactoperoxidase system (LPO) which prevents serious airborne infections. The LPO system requires iodine, which is liberally provided by the typical Japanese diet but lacking in many others. One might consider the Japanese experience an incredibly large, open-label study exhibiting the preventative power of a high-iodine diet. We predict this favourable trend will continue for Japan because deadly variants of the severe, acute respiratory syndrome coronavirus 2 will be with us, forever.


Assuntos
COVID-19 , Iodo , Humanos , Japão/epidemiologia , Lactoperoxidase , SARS-CoV-2
11.
J Dairy Res ; 89(4): 427-430, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36533547

RESUMO

Lactoperoxidase (LPO) is a glycosylated antimicrobial protein present in milk with a molecular mass of 78 kDa. LPO is included in many biological processes and is well-known to have biocidal actions, acting as an active antibiotic and antiviral agent. The wide spectrum biocidal activity of LPO is mediated via a definite inhibitory system named lactoperoxidase system which plays a potent role in the innate immune response. With the current advancement in nanotechnology, nanoformulations can be developed for stabilizing and potentiating the activity of LPO for several applications. In the research described in this Research Communication, fresh LPO purified from bovine mammary gland secretions was used for nanoparticle synthesis using a simple thermal process at different pH and temperatures. The round-shaped nanoparticles (average size 229 nm) were successfully synthesized at pH 7.0 and a temperature of 75°C. These nanoparticles were tested against four different bacterial species namely S. flexineri, P. aeruginosa, S. aureus, and E. coli. The prepared nanoparticles exhibited strong inhibition of the growth against all four bacterial species as stated by their MIC and ZOI values. These results may help in increasing the efficiency of lactoperoxidase system and will assist in identifying novel avenues to enhance the stability and antimicrobial function of LPO in drug discovery and industrial processes.


Assuntos
Anti-Infecciosos , Lactoperoxidase , Animais , Bovinos , Lactoperoxidase/química , Escherichia coli , Staphylococcus aureus , Leite/química , Anti-Infecciosos/farmacologia
12.
Neurologia (Engl Ed) ; 37(8): 661-667, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36195375

RESUMO

Laboratory studies identified changes in the metabolism of halogens in the serum and cerebrospinal fluid (CSF) of patients with Parkinson's disease, which indicates the presence of "accelerated self-halogenation" of CSF and/or an increase in haloperoxidases, specifically serum thyroperoxidase and CSF lactoperoxidase. Furthermore, an excess of some halogenated derivatives, such as advanced oxygenation protein products (AOPP), has been detected in the CSF and serum. "Accelerated self-halogenation" and increased levels of haloperoxidases and AOPP proteins indicate that halogenative stress is present in Parkinson's disease. In addition, 3-iodo-L-tyrosine, a halogenated derivative, shows "parkinsonian" toxicity in experimental models, since it has been observed to induce α-synuclein aggregation and damage to dopaminergic neurons in the mouse brain and intestine. The hypothesis is that patients with Parkinson's disease display halogenative stress related to a haloenzymatic alteration of the synthesis or degradation of oxyacid of halogens and their halogenated derivatives. This halogenative stress would be related to nervous system damage.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Produtos da Oxidação Avançada de Proteínas , Animais , Halogênios , Humanos , Lactoperoxidase , Camundongos , alfa-Sinucleína/líquido cefalorraquidiano
13.
Anim Sci J ; 93(1): e13771, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36210498

RESUMO

A bacterial culture of milk is the most common test to determine the presence of mastitis-causing pathogens, which informs appropriate treatment. However, a certain proportion of clinical mastitis milk shows no growth of any mastitis-causing pathogens. We hypothesized that bacterial culture-negative clinical mastitis milk is associated with the activity of antimicrobial components contained in the milk. In this study, the differences in antimicrobial components (lactoferrin, transferrin, lysozyme, lactoperoxidase, and lingual antimicrobial peptide [LAP]) between bacterial culture-positive and culture-negative bovine clinical mastitis milk were investigated using Holstein cows. Our results showed that 37 out of 71 samples of clinical mastitis milk had negative bacterial cultures. The LAP concentration in bacterial culture-negative milk was lower than that in positive milk (31.95 ± 1.64 nM vs. 42.85 ± 4.01 nM). In contrast, the lysozyme concentration in bacterial culture-negative milk was higher than that in positive milk (0.76 ± 0.15 µg/ml vs. 0.42 ± 0.06 µg/ml). In conclusion, the concentration of antimicrobial components was different between bacterial culture-positive and culture-negative bovine clinical mastitis milk, which suggests that antimicrobial components are related to bacterial culture results.


Assuntos
Anti-Infecciosos , Doenças dos Bovinos , Mastite Bovina , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/uso terapêutico , Bactérias , Bovinos , Doenças dos Bovinos/tratamento farmacológico , Feminino , Lactoferrina/metabolismo , Lactoperoxidase/metabolismo , Mastite Bovina/microbiologia , Leite/metabolismo , Muramidase
14.
Caries Res ; 56(4): 385-398, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36116431

RESUMO

Salivary proteins play an important role in repairing mechanisms of damaged tissues and the maintenance of oral health. However, there is a dearth of information in the literature regarding the concentrations of salivary proteins in caries-free (CF) and caries-active (CA) subjects. Hence, this systematic review was conducted to update our previous systematic review published in 2013 that aimed to assess the association between caries and salivary proteins by comparing CF and CA individuals. Thereby, evaluating the possibility of whether salivary proteins can be regarded as biomarkers for caries. An extensive search of studies was conducted using PubMed, EMBASE, Clarivate Analytics' Web of Science, and Elsevier's Scopus between July 2012 and January 2022, without any language restriction. Manual searching in Google Scholar and evaluation of bibliographies of the included studies were also undertaken. The Newcastle-Ottawa Scale was used to assess the risk of bias (RoB) within the included studies. Of 22 included studies, 1,551 human subjects (range: 30-213 participants) were recruited, of which 848 individuals (54.7%) were CA and 703 (45.3%) were CF. Regarding the utilization of DMFT as the caries index, high variability was observed across different articles. A statistically significant increase in the salivary levels of alpha-amylase, acidic proline-rich protein-1, histatin-5, lactoperoxidase, and mucin-1 was found in CA patients, while the salivary levels of carbonic anhydrase 6, proteinase-3, and statherin were observed to be significantly increased in CF subjects. Conflicting results were found regarding the salivary levels of immunoglobulin A and total proteins among CA and CF subjects. The included studies were categorized as low RoB (n = 15), medium RoB (n = 4), and high RoB (n = 3). Due to significant heterogeneity among the included studies, no meta-analysis could be performed. In conclusion, the salivary levels of protein(s) might be a useful biomarker for caries diagnosis, especially alpha-amylase, acidic proline-rich protein-1, histatin-5, lactoperoxidase, mucin-1, carbonic anhydrase 6, proteinase-3, and statherin. However, their diagnostic value must be verified by large-scale prospective studies.


Assuntos
Cárie Dentária , Mucina-1 , Humanos , Cárie Dentária/diagnóstico , Cárie Dentária/metabolismo , Histatinas , Lactoperoxidase , Estudos Prospectivos , Proteínas e Peptídeos Salivares , Biomarcadores , Prolina , alfa-Amilases , Peptídeo Hidrolases
15.
Int J Biol Macromol ; 220: 43-55, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35970364

RESUMO

This study identifies promising potential of a novel and safer nanocombination of bovine milk lactoperoxidase (LPO) and lactoferrin (LF) to target breast cancer in vitro and in adult female albino rat model. Favorable selective anticancer effects of the prepared nanocombination were observed, in a dose-dependent manner, against both MCF-7 and MDA cell lines, sparing normal HFB-4 cells. The administration of LPO + LFNPs markedly improved the induced-breast cancer disorders, prolonged survival and reduced the values of serum TNF-α, IL1ß, CD4+, ALAT, ASAT, urea, creatinine, cholesterol and triglycerides with remarkable elevation in mammary SOD and GPx activity and GSH level. Moreover, the histopathological findings showed that LPO + LFNPs succeeded in prevention of mammary gland tumorigenesis. Superior efficacy of LPO + LFNPs was observed against pro-inflammatory cytokines through their anti-inflammatory and immunomodulatory properties. The treatment of LPO + LFNPs more significantly modulated the apoptosis and enhanced the expression of cell cycle regulator genes, which demonstrates a successful tumor therapy in vitro and in vivo. Therefore, this study provided evidence that the chemo-preventive feature of LPO + LFNPs may offer a novel alternative therapy for the treatment of breast cancer through enhances apoptosis pathway, improvement of immune response, reduction of inflammation and restoration of the impaired oxidative stress.


Assuntos
Lactoperoxidase , Neoplasias Mamárias Animais , Animais , Apoptose , Creatinina , Feminino , Humanos , Imunidade , Lactoferrina/metabolismo , Lactoperoxidase/uso terapêutico , Células MCF-7 , Neoplasias Mamárias Animais/tratamento farmacológico , Nanopartículas , Ratos , Superóxido Dismutase/metabolismo , Triglicerídeos , Fator de Necrose Tumoral alfa/metabolismo , Ureia
16.
J Biol Chem ; 298(9): 102359, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35952759

RESUMO

Hypothiocyanous acid (HOSCN) is an antimicrobial oxidant produced from hydrogen peroxide and thiocyanate anions by heme peroxidases in secretory fluids such as in the human respiratory tract. Some respiratory tract pathogens display tolerance to this oxidant, which suggests that there might be therapeutic value in targeting HOSCN defense mechanisms. However, surprisingly little is known about how bacteria protect themselves from HOSCN. We hypothesized that tolerant pathogens have a flavoprotein disulfide reductase that uses NAD(P)H to directly reduce HOSCN, similar to thioredoxin reductase in mammalian cells. Here, we report the discovery of a previously uncharacterized flavoprotein disulfide reductase with HOSCN reductase activity, which we term Har (hypothiocyanous acid reductase), in Streptococcus pneumoniae, a bacterium previously found to be tolerant of HOSCN. S. pneumoniae generates large amounts of hydrogen peroxide that can be converted to HOSCN in the respiratory tract. Using deletion mutants, we demonstrate that the HOSCN reductase is dispensable for growth of S. pneumoniae in the presence of lactoperoxidase and thiocyanate. However, bacterial growth in the HOSCN-generating system was completely crippled when deletion of HOSCN reductase activity was combined with disruption of GSH import or recycling. Our findings identify a new bacterial HOSCN reductase and demonstrate a role for this protein in combination with GSH utilization to protect S. pneumoniae from HOSCN.


Assuntos
Anti-Infecciosos , Tiocianatos , Animais , Dissulfetos , Heme , Humanos , Peróxido de Hidrogênio/farmacologia , Lactoperoxidase , Mamíferos/metabolismo , NAD , Oxidantes/metabolismo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Tiocianatos/metabolismo , Tiocianatos/farmacologia , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxina Dissulfeto Redutase/metabolismo
17.
Sci Rep ; 12(1): 13153, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915221

RESUMO

There is an urgent need in the medicinal fields to discover biocompatible nanoformulations with low cytotoxicity, which provide new strategies for promising therapies for several types of tumors. Bovine lactoperoxidase (LP) and lactoferrin (LF) have recently attracted attention in medicine for their antitumor activities with recognized safety pattern. Both LP and LF are suitable proteins to be coated or adsorbed to Cu and Fe nanometals for developing stable nanoformulations that boost immunity and strong anticancer effects. New nanometals of Cu and Fe NPs embedded in LP and LF forming novel nanocombinations of LP-CNPs and LF-FNPs had a spherical shape with an average nanosize of about 21 nm. The combination of LP-CNPs and LF-FNPs significantly exhibited the highest growth inhibitory efficacy, in terms of effectively lowering the half-maximal inhibitory concentration (IC50) values, against Caco-2, HepG2 and MCF7 cells comparing to nanometals, LP, LF and individual nanoproteins (LP-CNPs or LF-FNPs). The highest apoptotic effect of this nanocombination (LP-CNPs and LF-FNPs) was confirmed by the highest percentages of annexin-stained apoptotic cells and G0 population with the strongest alteration in the expression of two well-characterized apoptosis guards (p53 and Bcl-2) and the maximum suppression in the proliferation marker (Ki-67). Also, the in silico analysis predicted that LP-CNPs and LF-FNPs enhanced AMP-activated protein kinase (AMPK, p53 activator) activity and inhibited cancer migration-related proteases (cathepsin B and matrix metalloproteinase (MMP)-9). Our results offer for the first time that these novel nanocombinations of LP and LF were superior in their selectivity and apoptosis-mediating anticancer activity to Cu and Fe nanometals as well as the free form of these proteins or their individual nanoforms.


Assuntos
Lactoferrina , Lactoperoxidase , Animais , Apoptose , Células CACO-2 , Bovinos , Cobre/metabolismo , Humanos , Ferro/metabolismo , Lactoferrina/metabolismo , Lactoferrina/farmacologia , Lactoperoxidase/farmacologia , Proteína Supressora de Tumor p53/farmacologia
18.
Proc Natl Acad Sci U S A ; 119(29): e2205574119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858331

RESUMO

Intestinal barrier immunity is essential for controlling gut microbiota without eliciting harmful immune responses, while its defect contributes to the breakdown of intestinal homeostasis and colitis development. Chemerin, which is abundantly expressed in barrier tissues, has been demonstrated to regulate tissue inflammation via CMKLR1, its functional receptor. Several studies have reported the association between increased expression of chemerin-CMKLR1 and disease severity and immunotherapy resistance in inflammatory bowel disease (IBD) patients. However, the pathophysiological role of endogenous chemerin-CMKLR1 signaling in intestinal homeostasis remains elusive. We herein demonstrated that deficiency of chemerin or intestinal epithelial cell (IEC)-specific CMKLR1 conferred high susceptibility to microbiota-driven neutrophilic colon inflammation and subsequent tumorigenesis in mice following epithelial injury. Unexpectedly, we found that lack of chemerin-CMKLR1 signaling specifically reduced expression of lactoperoxidase (LPO), a peroxidase that is predominantly expressed in colonic ECs and utilizes H2O2 to oxidize thiocyanates to the antibiotic compound, thereby leading to the outgrowth and mucosal invasion of gram-negative bacteria and dysregulated CXCL1/2-mediated neutrophilia. Importantly, decreased LPO expression was causally linked to aggravated microbiota-driven colitis and associated tumorigenesis, as LPO supplementation could completely rescue such phenotypes in mice deficient in epithelial chemerin-CMKLR1 signaling. Moreover, epithelial chemerin-CMKLR1 signaling is necessary for early host defense against bacterial infection in an LPO-dependent manner. Collectively, our study reveals that the chemerin-CMKLR1/LPO axis represents an unrecognized immune mechanism that potentiates epithelial antimicrobial defense and restricts harmful colonic neutrophilia and suggests that LPO supplementation may be beneficial for microbiota dysbiosis in IBD patients with a defective innate antimicrobial mechanism.


Assuntos
Carcinogênese , Quimiocinas , Colite , Colo , Microbioma Gastrointestinal , Peptídeos e Proteínas de Sinalização Intercelular , Lactoperoxidase , Receptores de Quimiocinas , Animais , Carcinogênese/imunologia , Transformação Celular Neoplásica , Quimiocinas/genética , Quimiocinas/metabolismo , Colite/imunologia , Colite/microbiologia , Colo/imunologia , Colo/microbiologia , Peróxido de Hidrogênio/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Lactoperoxidase/metabolismo , Camundongos , Neutrófilos/imunologia , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo
19.
Small ; 18(27): e2201667, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35652507

RESUMO

In this work, the synthesis and characterization of ultrathin metal oxide, called biotene, using liquid-phase exfoliation from naturally abundant biotite are demonstrated. The atomically thin biotene is used for energy harvesting using its flexoelectric response under multiple bending. The effective flexoelectric response increases due to the presence of surface charges, and the voltage increases up to ≈8 V, with a high mechano-sensitivity of 0.79 V N-1 for normal force. This flexoelectric response is further validated by density functional theory (DFT) simulations. The atomically thin biotene shows an increased response in the magnetic field and thermal heating. The synthesis of two-dimensional (2D) metal-oxide biotene suggests a wealth of future 2D-oxide material for energy generation and energy harvesting applications.


Assuntos
Glucose Oxidase , Óxidos , Silicatos de Alumínio , Combinação de Medicamentos , Compostos Ferrosos , Lactoperoxidase , Muramidase
20.
PLoS One ; 17(2): e0263714, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35176036

RESUMO

This report describes how image processing harnessed to multivariate analysis techniques can be used as a bio-analytical tool for mastitis screening in cows using milk samples collected from 48 animals (32 from Jersey, 7 from Gir, and 9 from Guzerat cow breeds), totalizing a dataset of 144 sequential images was collected and analyzed. In this context, this methodology was developed based on the lactoperoxidase activity to assess mastitis using recorded images of a cuvette during a simple experiment and subsequent image treatments with an R statistics platform. The color of the sample changed from white to brown upon its exposure to reagents, which is a consequence of lactoperoxidase enzymatic reaction. Data analysis was performed to extract the channels from the RGB (Red-Green-Blue) color system, where the resulting dataset was evaluated with Principal Component Analysis (PCA), Multiple Linear Regression (MLR), and Second-Order Regression (SO). Interesting results in terms of enzymatic activity correlation (R2 = 0.96 and R2 = 0.98 by MLR and SO, respectively) and of somatic cell count (R2 = 0.97 and R2 = 0.99 by MLR and SO, respectively), important mastitis indicators, were obtained using this simple method. Additionally, potential advantages can be accessed such as quality control of the dairy chain, easier bovine mastitis prognosis, lower cost, analytical frequency, and could serve as an evaluative parameter to verify the health of the mammary gland.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Lactoperoxidase/análise , Lactoperoxidase/metabolismo , Mastite Bovina/diagnóstico , Leite/química , Animais , Bovinos , Feminino , Mastite Bovina/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...